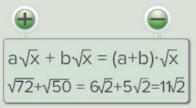
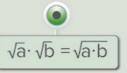
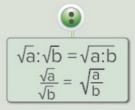
1 Quadrieren / Wurzelziehen

2 √2 ist eine reelle Zahl

- 3 Teilweise Wurzelziehen
- 4 Wurzeln multiplizieren & dividieren
- 5 Wurzeln addieren & subtrahieren
- 6 kürzen & erweitern



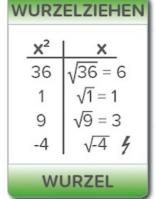






Wurzelziehen ist die Umkehrung vom Quadrieren.

QUADRIEREN	
×	X ²
5	$5^2 = 25$
1	12 = 1
9	9 ² = 81
-4	$(-4)^2 = 16$
OLIADBATZAHI	



Definition

 $\sqrt{36} = 6$ Die Wurzel aus 36 Radikant ist 6, da 6 diejenige positive Zahl ist, die mit sich selbst multipliziert 36 ergibt.

Merke

Die Wurzel aus einer Zahl ist immer positiv. Man kann nur aus einer positiven Zahl die Wurzel ziehen.

Beweis nach Euklid

Annahme: √2 ist eine rationale Zahl

- Für √2 gibt es einen gekürzten Bruch
- **(a)** $\sqrt{2} = \frac{p}{q}$ p und q sind teilerfremd
- $\left(\sqrt{2}\right)^2 = \left(\frac{p}{q}\right)^2$
- $2 = \frac{p^2}{q^2} = \frac{p \cdot p}{q \cdot q}$ WIDERSPRUCH

Dieser Bruch kann nicht 2 sein, weil p und q teilerfremd sind und durchs Quadrieren kein Teiler hinzukommen kann.

Um 2 zu bekommen, muss aber der Bruch kürzbar sein, z.B. $\frac{20}{10}$

Die reellen Zahlen

 $\sqrt{2}$ = 1,414213562...

- ist eine irrationale Zahl
- hat unendlich viele Nachkommastellen und keine Periode
- kann nur mithilfe einer Intervallschachtelung eingegrenzt werden

 $[1,414 < \sqrt{2} < 1,415]$ Intervall 0,001

Rezept

teilweise Wurzelziehen

Steht unter der Wurzel ein quadratischer Faktor, so kann man diesen nach Wurzelziehen vor die Wurzel bringen.

Zerlege in quadr. Faktoren

$$\sqrt{108} = \sqrt{9.12} = \sqrt{9.4.3}$$

Ziehe die Wurzel

$$\sqrt{9 \cdot 4 \cdot 3} = 8 \cdot 2\sqrt{3} = 6\sqrt{3}$$

Beispiel 1

$$\sqrt{18 \cdot a^5} = \sqrt{9 \cdot 2 \cdot a^4 \cdot a} = 3 \cdot a^2 \sqrt{2 \cdot a}$$

Beispiel 2

$$\sqrt{27 \cdot x^6} = \sqrt{9 \cdot 3 \cdot x^6} =$$

$$3 \cdot x \sqrt{3}$$

als 1 Term schreiben

Steht vor der Wurzel ein Faktor, so kann man diesen durch Quadrieren unter die Wurzel schreiben.

Quadriere den Faktor und schreibe unter die Wurzel

$$4\sqrt{3} = \sqrt{4 \cdot 4 \cdot 3}$$

multipliziere die Faktoren

$$\sqrt{4.4.3} = \sqrt{16.3} = \sqrt{48}$$

Beispiel 1

$$2 \cdot a \sqrt{5}a = \sqrt{2 \cdot 2 \cdot a \cdot a \cdot 5}a = \sqrt{20 \cdot a^3}$$

Beispiel 2

$$4 \cdot \sqrt{2} \times \sqrt{2} = \sqrt{16} \cdot \sqrt{2} \times \sqrt{2} = \sqrt{32} \times \sqrt{3}$$

Multiplikation

$$\sqrt{a} \cdot \sqrt{b} = \sqrt{a \cdot b}$$

Werden Wurzeln multipliziert, so kann man sie als Faktoren unter einer Wurzel schreiben und dann multiplizieren.

Beispiele

$$\sqrt{2} \cdot \sqrt{18} = \sqrt{2 \cdot 18} = \sqrt{36} = 6$$

$$\sqrt{3x} \cdot \sqrt{6x^2} = \sqrt{3x \cdot 6x^2} = \sqrt{18x^3}$$

Division

$$\sqrt{a}:\sqrt{b}=\sqrt{a:b}=\frac{\sqrt{a}}{\sqrt{b}}=\sqrt{\frac{a}{b}}$$

Werden Wurzeln dividiert, so kann man sie als Bruch unter einer Wurzel schreiben.

Beispiele

$$\sqrt{75} : \sqrt{3} = \sqrt{75} : 3 = \sqrt{25} = 5$$

$$\sqrt{\frac{14}{30}}:\sqrt{\frac{35}{12}}=\sqrt{\frac{14\cdot35}{30\cdot12}}=\sqrt{\frac{7\cdot7}{6\cdot6}}=\frac{7}{6}$$

gaanz wichtig

Diese Regel gilt nicht für 🖶 und 🖃 !!

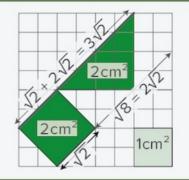
$$\sqrt{9} + \sqrt{16} = 3 + 4 = \sqrt{9 + 16} = \sqrt{25} = 5$$

Addition/Subtraktion

$$a \cdot \sqrt{x} + b \cdot \sqrt{x} = (a+b) \cdot \sqrt{x}$$

Man kann nur gleiche Wurzeln addieren/subtrahieren.

Durch Ausklammern kann die Anzahl der gleichen Wurzeln bestimmt werden.



Beispiele

Distributivgesetz

$$\sqrt{2} \cdot (\sqrt{8} + \sqrt{7}) = \sqrt{2 \cdot 8} + \sqrt{2 \cdot 7} = 4 + \sqrt{14}$$

$2\sqrt{3} + \sqrt{5} - 4\sqrt{3} + \sqrt{5} = -2\sqrt{3} + \sqrt{5}$ gleich Zähle nur gleicke

teilweise Wurzelziehen

$$\sqrt{72} + \sqrt{12} - \sqrt{50} =$$

$$6 \cdot \sqrt{2} + 2 \cdot \sqrt{3} - 5 \cdot \sqrt{2} = \sqrt{2} + 2 \cdot \sqrt{3}$$
gleich

Wurzeln kürzen

Einen Bruch zu kürzen heißt, den **Zähler und Nenner** durch die gleiche Zahl zu **dividieren**.

$$\frac{12}{18} \stackrel{6}{=} \frac{12:6}{18:6} = \frac{2}{3}$$

$$\frac{\sqrt{3} + \sqrt{12}}{\sqrt{6}} = \frac{\sqrt{3} + \sqrt{3 \cdot 4}}{\sqrt{3 \cdot 2}} =$$

$$= \frac{\sqrt{3} \cdot (1 + \sqrt{4})}{\sqrt{3} \cdot \sqrt{2}} = \frac{3}{\sqrt{2}} = \frac{3}{\sqrt{2}}$$

Wurzeln erweitern

Einen Bruch zu erweitern heißt, den **Zähler und Nenner** mit der gleichen Zahl zu **multiplizieren**.

$$\frac{3}{5} = \frac{6 \cdot 3 \cdot 6}{5 \cdot 6} = \frac{18}{30}$$

$$\frac{\sqrt{2}+\sqrt{3}}{\sqrt{8}}\sqrt{\frac{2}{2}}\frac{(\sqrt{2}+\sqrt{3})\cdot\sqrt{2}}{\sqrt{8}\cdot\sqrt{2}} = \frac{\sqrt{2\cdot2}+\sqrt{3\cdot2}}{\sqrt{8\cdot2}} = \frac{2+\sqrt{6}}{4}$$

Nenner rational machen

$$\frac{\sqrt{2} + \sqrt{10}}{\sqrt{5}} \stackrel{\sqrt{5}}{=} \frac{(\sqrt{2} + \sqrt{10}) \cdot \sqrt{5}}{\sqrt{5}} = \frac{\sqrt{2 \cdot 5} + \sqrt{10 \cdot 5}}{\sqrt{5 \cdot 5}} = \frac{\sqrt{10} + 5\sqrt{2}}{5}$$

